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Unitarization & Geometric scaling

■ Saturation line: ρs(Y ) = λs ᾱsY ⇐⇒ Q2
s(Y ) = Q2

0 eλsᾱsY

■ Leading—order BFKL =⇒ λs ≈ 4.8, hence λsᾱs ∼ 1
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Unitarization & Geometric scaling

■ Geometric scaling window at 1 < ρ− ρs ≪
√

2DᾱsY

T (r, Y ) ≃ e−γs(ρ−ρs) = (r2Q2
s)

γs

■ Saturation makes itself felt in the dilute regime (Q2 > Q2
s)
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Geometric Scaling at HERA
(Staśto, Golec-Biernat and Kwieciński, 2000)

σ(x,Q2) ≈ σ(τ) with τ ≡ Q2/Q2
s(x), Q2

s(x) = (x0/x)
λ GeV2 , λ ≃ 0.3

x ≤ 0.01

Q2 ≤ 450 GeV2

Q2
s ∼ 1 GeV2

for x ∼ 10−4
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Geometric Scaling at HERA (2)
(Marquet and Schoeffel 2006)
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Gluon occupation number

xG(x,Q2) =

∫

d2b

∫ Q

dk k n(x, k)
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■ Qs(Y ) : the typical transverse momentum of the gluons

■ For k⊥ <∼ Qs(Y ) : Gluon saturation
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The Color Glass Condensate
(McLerran, Venugopalan, 1994; E.I., Leonidov, McLerran, 2000)

■ An effective theory for the small–x gluons in the

high–density environment characteristic of saturation

■ Large occupation numbers (n ∼ 1/αs)

◆ The gluons can be described as classical color fields X

◆ No fluctuations in the gluon number (2→ n splitting) X�
■ Separation of scales (longitudinal momentum/time)

◆ The smaller x, the shorter the lifetime of the gluon

∆t ∼ ~

∆E
=

2xp

k2
⊥

◆ The gluons with x′ ≫ x are ‘frozen’ over the typical time

scale for the dynamics at x
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The Color Glass Condensate

■ Small–x gluons: Classical color fields radiated by fast color

sources (x′ ≫ x) ‘frozen’ in some random configuration

■ Classical field equations (Yang–Mills) for the field Aµ
a [ρ]

■ Probability distribution for the charge density at Y : WY [ρ]

■ Renormalization group equation for WY [ρ] : JIMWLK
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CGC picture of DIS

■ Include all the evolution effects in the target wavefunction

■ The target : a random distribution of color charges (ρa)
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CGC picture of DIS

A A

■ The dipole undergoes multiple scattering off the color fields

generated by ρ : S(x,y)[ρ] = the ‘event-by-event’ S–matrix

■ Average over ρ with weight function WY [ρ] :

〈S(x,y)〉Y =

∫

D[ρ] WY [ρ] S(x,y)[ρ]

■ WY [ρ] : a kind of “super gluon distribution”

◆ information about all the n–point correlations of ρ
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The Weiszäcker–Williams color field
■ The Yang–Mills equation:

(

DνF
νµ

)

a
(x) = δµ+ρa(x−, x⊥)

■ NB : The source ρa is

◆ independent of the LC time x+ (Lorentz time dilation)
◆ localized near x− = 0 (i.e., z = t) within a distance fixed

by the uncertainty principle:

∆x− ∼ 1/Λ+ with Λ+ = xP+

(the minimal k+ momentum in the effective theory)

1/Λ

ρ

A
i

-x+



A brief reminder

Color Glass Condensate

● CGC

● CGC picture of DIS

● WW

● Coulomb

● Eikonal

● Wilson lines

● Dipole Eikonal

● Weight function

● MV model

JIMWLK

Gluon saturation

SCHOOL ON QCD, LOW X PHYSICS, SATURATION AND DIFFRACTION: Copanello (Calabria, Italy), July 1 - 14 2007 Non–linear evolution & Gluon saturation in QCD at high energy (I) – p. 11

Classical solution : Coulomb gauge

■ Exercise: Show that one can choose the solution Aµ
a so that

∂Aµ
a

∂x+
= 0, A−

a = 0, F ij
a = 0, i, j = 1, 2

After also fixing the gauge : only one independent field

■ Coulomb gauge : ∇iAi
a = 0 =⇒ Ai

a = 0, i = 1, 2

−∇2
⊥A

+
a (x−, x⊥) = ρa(x−, x⊥)

■ Exercise: Show that the solution is of the form

A+
a (x−,x) =

∫

d2
y

1

4π
ln

1

(x− y)2µ2
ρa(x−,y)

NB : Localized near x− = 0, so like the color charge itself.
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Eikonal Approximation

A

■ Right moving target (CGC) + Left moving projectile (q, q̄, g...)

■ Field equation in the background field: Dµ = ∂µ − igT aAµ
a

DµDµ φ(x) = 0, γµD
µ ψ(x) = 0, ...

■ When Aµ = 0, the projectile has only p− :

φ0(x) = e−ip−x+

=⇒ φ(x) = e−ip−x+

S(x−,x)

−iD+ S(x−,x) =
D2

⊥

2p−
S(x−,x)
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Eikonal Approximation

−iD+ S(x−,x) =
D2

⊥

2p−
S(x−,x)

■ High energy limit =⇒ D+ S(x−,x) ≈ 0

◆ Obvious in the target rest frame: p− is very large

◆ Also true in the target IMF: D+ ∼ 1/∆x− is very large

■ No transverse gradient =⇒ x = const.

◆ The particle preserves a straight line trajectory.
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Wilson lines (pour Julie)

A

D+ S(x−,x) ≡
(

∂

∂x−
− igT aA+

a

)

S(x−,x) = 0

Abelian case (gT a → e): S(x−,x) = exp
{

ie

∫ x−

−∞

dy−A+(y−,x)
}

⊲ The integrated field strength along the trajectory: dy−A+ ↔ jµA
µ

⊲ The S–matrix is a pure phase =⇒ elastic scattering
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Wilson lines (pour Julie)

A

D+ S(x−,x) ≡
(

∂

∂x−
− igT aA+

a

)

S(x−,x) = 0

non–Abelian case: S(x−,x) = P exp
(

ig

∫ x−

−∞

dy−A+
a (x−,x)T a

)

■ Path–ordered exponential (‘Wilson line’) : color rotation

S(x−) = eigǫA+(x−

N
) eigǫA+(x−

N−1
) · · · eigǫA+(x−

0
)
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Dipole scattering

A A

S(x,y) =
1

Nc
tr

(

V (x)V †(y)
)

V (x) ≡ Pexp
(

ig

∫

dx−A+
a (x−,x)ta

)

: ∈ SU(Nc)

■ Color trace: the dipole is color neutral

■ Color transparency: when x→ y, S → 1

■ Unitarity manifest: |S| ≤ 1 (multiple scattering)
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The weight function WY [ρ]

A A

■ S(x,y)[ρ] = the ‘event-by-event’ S–matrix :

a given configuration of the color sources in the target (ρa)

■ The physical amplitude: average over all configurations

average over ρ with weight function WY [ρ] :

〈S(x,y)〉Y =

∫

D[ρ] WY [ρ] S(x,y)[ρ]

■ Computing WY [ρ]: the main issue in the CGC formalism
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The McLerran–Venugopalan model
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■ The gluon distribution of a large nucleus (A≫ 1)

at not so large energy : αsY ≪ 1 (say, x = 10−1 ÷ 10−2)
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The McLerran–Venugopalan model
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■ The ‘color sources’: randomly distributed, uncorrelated,

valence quarks =⇒ a Gaussian weight function

WA[ρ] = N exp

{

− 1

2

∫

dx−d2
x
ρa(x−,x)ρa(x−,x)

µA(x−)

}

■ Exercice: Perform the average over ρa to show that:

S(r) ≃ e−r2Q2
s
(A) with Q2

s(A) ≡ αsNc

∫

dx−µA(x−) ∝ A1/3

⊲ multiple scattering (Glauber–like), unitarity, absorbtion
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Renormalization group at small x

■ Rapidity Y : All the information about the gluon distribution

has been included in the weight function WY [ρ]

■ Alternatively: WY [A+] (a simple change of variables)
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Renormalization group at small x

■ Rapidity Y + dY : One addition ‘color source’ (gluon) is

being radiated, from one of the previous color sources

■ Low density/energy : The new gluon is incoherently

produced from any of the previous sources: δρ ∝ ρ
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Renormalization group at small x

■ High density/energy : The new gluon can rescatter off the

color field produced by other sources: δρ = non–linear in ρ

■ New correlations among the color fields A+
a
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Renormalization group at small x

■ Absorb the change in ρ and in the correlations into a change

of the weight function: WY [ρ] −→WY +dY [ρ]

■ Evolution equation for WY [ρ] (‘JIMWLK’)

∂WY [ρ]

∂Y
= H

[

ρ,
δ

δρ

]

WY [ρ]
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Renormalization group at small x

■ Absorb the change in ρ and in the correlations into a change

of the weight function: WY [ρ] −→WY +dY [ρ]

■ Evolution equation for WY [ρ] (read ‘JIMWaLK’)

(Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov, and Kovner, 97–00)
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JIMWLK Hamiltonian

■ A ‘cut’ diagram : amplitude × complex conjugate amplitude

factorized structure: H =

∫

d2z⊥
2π

J i
a(z⊥)J i

a(z⊥)

■ The ‘current’ J i
a(z⊥) is real =⇒ positivity of H

■ The diagram above: linear approximation⇐⇒ BFKL
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JIMWLK Hamiltonian

■ A ‘cut’ diagram : amplitude × complex conjugate amplitude

factorized structure: H =

∫

d2z⊥
2π

J i
a(z⊥)J i

a(z⊥)

■ The ‘current’ J i
a(z⊥) is real =⇒ positivity of H

■ But the same factorized structure holds in the general case.
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The linear approximation: Recovering BFKL

J i
a(z) = ig T c

ab

∫

d2
x

2π

zi − xi

(z − x)2
(A+

c (z)−A+
c (x))

iδ

δA+
b (x)

■ The amplitude for producing a gluon at x out of a source at z

■ Valid so long as the fields are weak, such that gA+ ≪ 1
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The linear approximation: Recovering BFKL

J i
a(z) = ig T c

ab

∫

d2
x

2π

zi − xi

(z − x)2
(A+

c (z)−A+
c (x))

iδ

δA+
b (x)

■ The amplitude for producing a new gluon is proportional to
the strength A of the field created in the previous steps

=⇒ exponential amplification
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The linear approximation: Recovering BFKL

■ The weak–field (BFKL) limit of the JIMWLK Hamiltonian

∂WY [A]

∂Y
≈ 1

2

δ

δA
AA

δ

δA
WY ≡ HBFKLWY [A]

■ Each step in the evolution : 2 → 2 gluon vertex

Insert a ‘BFKL exchange’ in between each pair of fields

■ All gluon correlations rise exponentially with Y
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The general case: JIMWLK equation

■ Strong fields gA+ ∼ O(1) : The quantum gluon rescatters of
the background field in the eikonal approximation

J i
a(z) =

∫

d2
x

2π

zi − xi

(z − x)2
(

1− V †(z)V (x)
)

ab

iδ

δA+
b (x)

■ The induced color field is coherently produced out of all the
preexisting color sources
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The general case: JIMWLK equation

■ The Wilson lines V ∼ eigA rapidly oscillate and their
products self–average to zero

J i
a(z) ≈

∫

d2
x

2π

zi − xi

(z − x)2
[

1
] iδ

δA+
a (x)

■ The gluon emission rate saturates at a value independent of
the background field ! =⇒ “gluon saturation”
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The general case: JIMWLK equation

■ The JIMWLK equation in compact notations (with Aa ≡ A+
a )

∂WY [A]

∂Y
=

1

2

δ

δAa
χab[A]

δWY

δAb

where χab[A] is non–linear in A to all orders (Wilson lines)

■ n → 2 gluon vertices with arbitrary n (non–linear evolution)

■ Infinite sum of diagrams in coordinate space
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The essence of saturation

J i
a(z) =

∫

d2
x

2π

zi − xi

(z − x)2
(

1− V †(z)V (x)
)

ab

iδ

δA+
b (x)

■ The Wilson line bilinear V †(z)V (x) self–averages to zero.

■ An ‘all orders’/strong field effect: A ∼ 1/g

(semiclassical: like a Laser, or a Bose Condensate)

■ This only happens on sufficiently large distances !

(V †(z)V (x) → 1 as z → x !)

■ Remember: V †(z)V (x) = the S–matrix for a color dipole

V †(z)V (x) → 0 over distances |z − x| >∼ 1/Qs(Y )

■ The connection saturation↔ dipole unitarity is manifest!

■ This happens on relatively large time scales : “Glass”
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Gluon Saturation

■ Large distances r >∼ 1/Qs(Y ) ←→ k⊥ <∼ Qs(Y )

■ For k⊥ ≫ Qs(Y ), the gluons obey BFKL/DGLAP evolution,

... but with saturation boundary condition:

◆ n(Y, k⊥) ∝ 1/k2
⊥ for k⊥ ≫ Qs(Y )

◆ ... but n(Y, k⊥) ≈
(

Q2
s(Y )/k2

⊥

)γs at ‘geometric scaling’

Y = 15
Y = 10
Y = 5

log(k2/k2

0
)

n
(k

)
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Gluon Saturation

■ Large distances r >∼ 1/Qs(Y ) ←→ k⊥ <∼ Qs(Y )

■ For k⊥ <∼ Qs(Y ), the gluon occupation number “saturates” :

◆ n(Y, k⊥) rises linearly with Y (rather than exponentially)

◆ ... and logarithmically with 1/k2
⊥ :

n(Y, k⊥) ≈ 1

αsNc
ln
Q2

s(Y )

k2
⊥

∝ Y

Y = 15
Y = 10
Y = 5

log(k2/k2

0
)

n
(k

)

35302520151050-5-10
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1

0.1

0.01

0.001

1e-04

1e-05
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Color neutrality at saturation

■ In a low energy hadron, color is screened by confinement:

r ∼ Λ−1
QCD ∼ 1 fm

■ At high energy, the densely packed gluons screen each
other, in such a way that color neutralization occurs already
at the perturbative scale Q−1

s ≪ Λ−1
QCD

Q
S
-1

∆ Σ
■ Qs(Y ) is the “infrared cutoff” at high energy, and is hard !
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Evolution of observables

■ Recall: Observables are obtained by averaging over ρ, or A :

〈O[A]〉Y =

∫

D[A] WY [A] O[A]

■ Examples:

◆ The dipole S–matrix: S(x,y) = 1
Nc

tr
(

V (x)V †(y)
)

◆ The unintegrated gluon distribution: n(Y, k⊥) ↔ Ei
aE

i
a

■ Differentiate w.r.t. Y , use JIMWLK, and integrate by parts:

∂Y 〈O[A]〉Y =

∫

D[A]
(

∂YWY

)

O[A]

=

∫

D[A]
1

2

(

δ

δAa
χab

δWY

δAb

)

O[A]

=

∫

D[A]WY [A]
1

2

δ

δAa
χab

δ

δAb
O[A]
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Evolution of observables

■ Recall: Observables are obtained by averaging over ρ, or A :

〈O[A]〉Y =

∫

D[A] WY [A] O[A]

■ Examples:

◆ The dipole S–matrix: S(x,y) = 1
Nc

tr
(

V (x)V †(y)
)

◆ The unintegrated gluon distribution: n(Y, k⊥) ↔ Ei
aE

i
a

■ Differentiate w.r.t. Y , use JIMWLK, and integrate by parts:

■ ... or, simply,

∂Y 〈O[A]〉Y = 〈HJIMWLK O[A]〉Y

■ One uses the functional derivatives to act on the observable
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Recovering Balitsky equations

■ Exercise:

By using JIMWLK and S(x,y) = 1
Nc

tr
(

V (x)V †(y)
)

, deduce

∂

∂Y
〈S(x,y)〉Y =

ᾱs

2π

∫

z

(x−y)2

(x−z)2(y−z)2

{

−〈S(x,y)〉Y + 〈S(x, z)S(z,y)〉Y
}

■ The first Balitsky equation !

■ The action of the functional derivatives on Wilson lines

V (x) ≡ Pexp
(

ig

∫ ∞

−∞

dx−A+
a (x−,x)T a

)

δ

δA+
a (x)

V (x) ≡ δ

δA+
a (x−→∞,x)

V (x) = igT a V (x)

■ The derivative w.r.t. the field at x− =∞ ! (“Lie derivative”)

■ The CGC color source/field gets built in layers of x−
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Recovering Balitsky equations

■ Exercise:

By using JIMWLK and S(x,y) = 1
Nc

tr
(

V (x)V †(y)
)

, deduce

∂

∂Y
〈S(x,y)〉Y =

ᾱs

2π

∫

z

(x−y)2

(x−z)2(y−z)2

{

−〈S(x,y)〉Y + 〈S(x, z)S(z,y)〉Y
}

■ The first Balitsky equation !

■ Not a closed equation !

We also need the equation for the 2–dipole projectile, etc.

∂

∂Y
〈S(x1,y1) S(x2,y2)〉Y = · · ·

■ The first equation in an infinite hierarchy !
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Balitsky hierarchy ... and beyond (1)

■ Diagrammatic summary of the equations

∂〈T 〉
∂t

≃ 〈T 〉 − 〈T T 〉

■ The first Balitsky equation in schematic form (with t = ᾱsY )
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Balitsky hierarchy ... and beyond (2)

■ Diagrammatic summary of the equations (with t = ᾱsY )

∂〈T 〉
∂t

≃ 〈T 〉 − 〈T T 〉

∂〈T T 〉
∂t

≃ 2〈T T 〉 − 2 〈T T T 〉+ O(1/N2
c )
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Balitsky hierarchy ... and beyond (3)

■ Diagrammatic summary of the equations (with t = ᾱsY )

∂〈T T 〉
∂t

≃ 2〈T T 〉 − 2 〈T T T 〉+ α2
s〈T 〉 + O(1/N2

c )

■ Additional, ‘fluctuation’, term from the 2→ 4 splitting vertex
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The Pomeron loop hierarchy

■ Schematic structure of the evolution equations (large Nc)

∂〈T 〉
∂t

≃ 〈T 〉 − 〈T T 〉

∂〈T T 〉
∂t

≃ 2〈T T 〉 − 2 〈T T T 〉+ α2
s〈T 〉

■ Cartoon versions of the ‘Pomeron loop’ equations in QCD
at large Nc (E.I. and D. Triantafyllopoulos, 04)
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The Pomeron loop hierarchy

■ Schematic structure of the evolution equations (large Nc)

∂〈T 〉
∂t

≃ 〈T 〉 − 〈T T 〉

∂〈T T 〉
∂t

≃ 2〈T T 〉 − 2 〈T T T 〉+ α2
s〈T 〉

■ The fluctuation term dominates when 〈T 〉 <∼ α2
s (dilute tail)

■ Remember: The evolution is driven by the dynamics in the

dilute tail =⇒ strong sensitivity to fluctuations !

(Mueller, Shoshi; E.I., Mueller, Munier, 2004)

■ Infinite hierarchy for 〈TT · · · 〉 ⇐⇒ Single Langevin equation:

∂T

∂t
= T − T 2 +

√

α2
sT ν , 〈ν(t1)ν(t2)〉 = δ(t1 − t2)

■ Stochastic FKPP equation =⇒ reaction–diffusion process
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Front diffusion through fluctuations

■ The stochastic evolution generates un ensemble of fronts
which differ by their saturation momentum ρs ≡ lnQ2

s

〈ρs(Y )〉 = λY, 〈ρ2
s〉 − 〈ρs〉2 = DY, D ∼ 1

ln3(1/αs)

log(r2

0
/r2)

T

2520151050-5

1

0.8

0.6

0.4

0.2

0

■ With increasing energy, the fronts spread from each other

=⇒ geometric scaling is progressively washed out !
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The “phase–diagram” revisited

■ HERA, RHIC ≈ intermediate energies (most likely)

■ LHC ? ... We don’t really know ! (large theoretical uncertainties)

■ Compare theoretical expectations with the data !
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